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Abstract

This paper discusses the FEM use of Murakami zig–zag function (MZZF) in the two-dimensional modeling of multilayered

plates. A literature overview is first conducted on the available works in which MZZF has been applied. MZZF is used to introduce

the zig–zag effect in classical and higher order theories, which are formulated using only displacements as unknowns. MZZF is also

considered to introduce the zig–zag effect in those theories, which are formulated on the basis of both displacement and transverse

stress assumptions (mixed formulations). The present FEM formulation is validated by comparing the results with some available

papers from the literature. A very thick plate (a/h = 4) is studied and the results are compared with the commercial code NAS-

TRAN. Numerical results are presented to show both the effectiveness and limitations of MZZF in the modeling of layered plates.

Linear up to forth order expansion for in-plane and out-of-plane displacements, in the thickness plate direction, has been compared.

It has been concluded that MZZF consists of a valuable tool to enhance the performances of both classical and advanced theories.

In particular, the conducted numerical evaluations have shown that it can be more convenient to enhance a plate theory by intro-

ducing the MZZF than refining it by adding two or three higher order terms. However, in order to well approximate local effects or

study thick plates, advanced models (layer-wise or three-dimensional) are required.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

As well documented in [1], multilayered structures

show a displacement field, which exhibits a discontinu-

ous derivative with correspondence to each layer inter-

face. This change in slope between two adjacent layers

are known as zig–zag (ZZ) effect. Transverse shear and

normal strains deformations are the cause of the ZZ ef-
fect between layers that are assumed perfectly bonded

together. These transverse strains cause transverse

shears and normal stresses, which are continuous at

each layer interface (Interlaminar Continuity (IC) for

the transverse stresses). Several possibilities are known
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to take ZZ and IC into account in multilayered struc-

tures. Developments, see [2–7], have been made in the

framework of both layer-wise models (LWM), in which

the number of the unknown variables is kept dependent

by the number of the layers, and Equivalent Single

Layer Models (ESLM), in which the unknown variables

are the same for the whole laminate. The resulting theo-

ries are often denoted as zig–zag theories (ZZT). Among
the ZZT developed in the ESLM framework [8], three

independent approaches are known. These were denoted

in [8] as Lekhnitskii multilayered theory, Ambartsumian

multilayered theory and Reissner multilayered theory,

respectively. LMT and AWT describe the ZZ effect by

enforcing IC via constitutive equations of the layer

along with strain-displacement relations. Independent

assumptions for displacement and transverse stresses
are instead made in the RMT applications.
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In the framework of RMT applications, Murakami

[9] introduced a function of the thickness coordinate

able to emulate the ZZ effect. In [10] such a function

was denoted as �Murakami�s zig–zag function� (MZZF).

MZZF has been used in [9–14] to analyze static response

of layered plates and shells in conjunction of RMT
applications. Mixed finite elements for plates and shells

have been developed in [15–19]. MZZF has been also

applied in the framework of plate/shell theories using

only displacement variables ([14] and [20]). From imple-

mentation point of view, the inclusion of MZZF in exist-

ing plate models requires the same efforts that are

required by the inclusion of an additional degree of free-

dom. On the other hand, from numerical point of view,
as it will be clear in this paper, inclusion of MZZF leads

to significant improvements of the existing plate theo-

ries; however, these improvements are difficult to be ob-

tained by the use of other functions which differ by

MZZF. However, MZZF has been used by a few

authors, see also the review made in [10]. An extensive

evaluation of the use of MZZF is made in [1] using an

analytical formulation.
This paper aims to contribute to establish a better

understanding of the use of MZZF as a tool to intro-

duce ZZ effects in multilayered plate structures. It ex-
Fig. 1. Geometrical me

Fig. 2. Inclusion of MZZF to a linear distribution (ED1–EDZ1).
tends the usage in a FEM plate model (denoted as

FEM in the present work). The present paper has been

organized as follows.

MZZF has been described in Section 2. Section 3 dis-

cusses the use of MZZF in the framework of plate the-

ories, which are formulated on the basis of only
displacement unknowns and Principle of Virtual Dis-

placements (PVD) applications. This is the case of

FSDT and HSDT (see [6]), and it has been denoted as

simple use of MZZF. Section 4 presents the use of

MZZF in the case of RMT applications, which are for-

mulated in terms of both displacement and transverse

stress variables by referring to Reissner�s mixed varia-

tional theorem (RMVT) (see [24]). This second possibil-
ity of using MZZF has been herein denoted as advanced

use of MZZF. Numerical results are given in Section 5.

A comparison is made between analyses including

MZZF and those discarding it. A comparison with the

analytical results found in [1] is also made.

Full writing of governing equations as well as their

solution procedures have been omitted in the pre-

sent work. Interested readers are referred to the uni-
fied formulations developed for both PVD and

RMVT applications which have been detailed in

[10,11,19].
aning of MZZF.

Fig. 3. Inclusion of MZZF to a higher order distribution (ED3–

EDZ3).
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2. The Murakami zig–zag function

Consider a multilayerd plate composed by Nl layers,

which are perfectly bonded together. z is the thickness

coordinate of the entire multilayerd plate while zk is

the layer thickness coordinate. The non-dimensional
layer coordinate fk = zk/2hk is further introduced (hk is

the thickness of the kth layer, as can be seen in Fig.

1). The Murakami zig–zag function M(z) was defined

according to the following formula [9]:

MðzÞ ¼ ð�1Þkfk ð1Þ
M(z) has the following properties:

(1) It is a piece-wise linear function of the layer coordi-

nate zk.
(2) M(z) has unit amplitude for the whole layers.
Table 1

Transverse displacements Uz ¼ uz � 100ET h
3=ðp0a4Þ (z = 0) for a rectangula

[21]). Evaluations of benefits of simple use of MZZF

Uz

a/h 4

Exact [21] 2.820

ZZT [22] 2.729

ZZT [23] 2.80

Theory ANLT [1] FEM

Discarding MZZF

ED1 2.051 2.058

ED2 2.035 2.141

ED3 2.627 2.670

Including MZZF

EDZ1 2.736 2.747

EDZ2 2.719 2.786

EDZ3 2.811 2.860

Mechanical data of the lamina: EL/ET = 25, GLT/ET = 0.5, GTT/ET = 0.2 and

Table 2

Transverse displacements Uz ¼ uz � 100ET h
3=ðp0a4Þ (z = 0) for a rectangula

[21]). Evaluations of benefits of advanced use of MZZF

Uz

a/h 4

Exact [21] 2.820

ZZT [22] 2.729

ZZT [23] 2.80

Theory FEM

Discarding MZZF

EMC1 2.1620

EMC2 2.1795

EMC3 2.7271

Including MZZF

EMZC1 2.7499

EMZC2 2.7866

EMZC3 2.8632

Mechanical data of the lamina: EL/ET = 25, GLT/ET = 0.5, GTT/ET = 0.2 and
(3) The slope M 0(z) = dM
dz assumes opposite signs

between two-adjacent layers. Its amplitude is layer

thickness dependent.

A plot of M(z) in the three-layered plate is given in

Fig. 1. MZZF can be used to introduce discontinuous
slopes with correspondence to layer interfaces, for any

function f(z). If a linear function is considered, then

f1ðzÞ ¼ c0 þ c1z ð2Þ

where c0 and c1 are the amplitudes of the constant and

linear terms, respectively. By adding MZZF one has

f1MðzÞ ¼ c0 þ c1zþ cMMðzÞ ð3Þ
where cM is the effective amplitude of ZZ effect. f1 and

f1M are compared in Fig. 2 which makes evident how

M(z) emulates ZZ effects. M(z) can be also used in con-
r (b = 3a) three layered plates 0/90/0 loaded by pz ¼ p0 sin px
a sin py

b (see

20

.610

.609

–

ANLT [1] FEM

.5633 .5634

.5668 .5660

.5955 .5957

.6020 .6021

.6043 .6046

.6095 .6098

mLT = mTT = .25. Mesh used in the present FEM analyses: 4 · 12 (Q9).

r (b = 3a) three layered plates 0/90/0 loaded by pz ¼ p0 sin px
a sin py

b (see

20

.610

.609

–

.56761

.56746

.59837

.60302

.60510

.60977

mLT = mTT = .25. Mesh used in the present FEM analyses: 4 · 12 (Q9).
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junction with higher N-order expansion fN(z) (see Fig.

3),

fNM ðzÞ ¼ c0 þ c1zþ c2z2 þ � � � þ cN�1zN�1 þ cNzN þ cMMðzÞ
ð4Þ

Power of z could be replaced by any other set of polyno-

mials of z (Pi, i = 1,N):

fNMðzÞ ¼ c0P 0ðzÞ þ c1P 1ðzÞ þ c2P 2ðzÞ þ � � �
þ cN�1PN�1ðzÞ þ cNPN ðzÞ þ cMMðzÞ ð5Þ
3. Simple use of MZZF: refinements of classical theories

Classical theories for multilayered plates, such as

CLT, FSDT and HSDT, see [6,7], do not account for
Fig. 4. Non-dimensional displacement

Fig. 5. Line l (see Fig. 4.): non-dimensional lateral displacement.
the ZZ effects. A possible �simple use� of MZZF would

consist of enhancing the classical models by �simply�
adding M(z) in their displacement fields as explained

in [1] and shown, for the FDST case, in the following

equation:

u ¼ u0 þ zu1 þ ð�1ÞkfkuM ð6Þ

The term shown in the box is the zig–zag term. In [1],

the following remarks are made:

(1) The additional degree of freedom, uM, has been

introduced with respect to FSDT. It has a meaning

of displacement.

(2) The amplitude uM is layer independent: uM has, in

fact, an intrinsic ESLM description. At a first glance

this fact could appear as a strong limitation of
uy/h. Present NASTRAN results.

Fig. 6. Line l: advanced use of MZZF, EMC1 and EMZC1

comparison.



Fig. 7. Line l: advanced use of MZZF, EMZC3 and EMZC3

comparison.

Fig. 8. Line l: simple and advanced use of MZZF, EDZ3 and EMZC3

comparison.

Fig. 9. LM4, uy/h over the bottom surface (z/h = �0.5).

Fig. 10. EMZC1, uy/h over the bottom surface (z/h = �0.5).

Fig. 11. EMC1, uy/h over the bottom surface (z/h = �0.5).

Fig. 12. Non-dimensional normal stress rxx/p
0.
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MZZF. In reality, the ZZ effects have an ESLM

description also in other ZZ theories, such as

AWT and LMT, see [8].



Fig. 13. Advanced use of MZZF, EMC1 and EMZC1 comparison.

Fig. 14. Advanced use of MZZF, EMC3 and EMZC3 comparison.

Fig. 15. Non-dimensional transverse normal stress rzz/p
0.

Fig. 16. Advanced use of MZZF, EMC1 and EMZC1 comparison.

Fig. 17. Advanced use of MZZF, EMC3 and EMZC3 comparison.
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(3) MZZF can be used for both in-plane and out-of-

plane displacement components. This is a valuable

advantage of MZZF with respect to other ZZT.

3.1. Refinement of higher order theories by inclusion of

ZZ effects

Consider a model of displacement, which includes

transverse normal strains effects (see [19]). The displace-

ment field can be written as

u1 ¼ u01 þ zu11 þ � � � þ zNuN1
u2 ¼ u02 þ zu12 þ � � � þ zNuN2
u3 ¼ u03 þ zu13 þ � � � þ zNuN2

ð7Þ

Such theories are called EDN (E = Equivalent single

layer model; D = based on a Displacement formulation
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(PVD); N = order of expansion used). EDN can be im-

proved by adding MZZF as follows

u1 ¼ u01 þ zu11 þ � � � þ zNuN1 þ ð�1ÞkfkuM1
u2 ¼ u02 þ zu12 þ � � � þ zNuN2 þ ð�1ÞkfkuM2
u3 ¼ u03 þ zu13 þ � � � þ zNuN2 þ ð�1ÞkfkuM3

ð8Þ

Using an indicial notation

ui ¼ u0i þ zu1i þ z2u2i þ � � � zNuNi þ ð�1ÞkfkuMi i ¼ 1; 3

ð9Þ
Such theories are called using the acronym EDZN.

Figs. 2 and 3 qualitatively show the ED1, EDZ1 and

ED3, EDZ3 theories, respectively. The usage of MZZF

is also graphically shown.
4. Advanced use of MZZF in the framework of mixed

variational methods

As stated in the Introduction, the MZZF was origi-

nally introduced in the framework of RMT applications.

According to the RMVT statement, two independent

fields are assumed for displacements and transverse

stresses. The transverse stresses are assumed independ-

ent in each layer and are interlaminarly continuous.

AMT and LMT analyses introduced ZZ effect by impos-

ing IC conditions for transverse stresses. That cannot be
done by mixed approach. In this context, MZZF plays a

quite fundamental role. With respect to �simple use of

MZZF� discussed in the previous section, the �advanced
use of MZZF� presented herein permits the a priori ful-

fillment of both ZZ and IC in multilayered plate theo-

ries. As disadvantage, an increase of the number of

unknown variables is obtained. This fact can be some-

how avoid by referring to the Weak Form of Hooke�s
Law, presented in [10], which permits to express trans-

verse stress variables in terms of displacement

unknowns.

4.1. Stress and displacement models

The displacement models including or discarding

MZZF are the same as those used in the previous sec-
tion. Transverse stress fields (both shear and normal

components) in each layer are conveniently written

[10] in terms of Legendre polynomials according to the

following expansion:
Table 3

Non-dimensional transverse displacements uz/h at x/h = 2 and y/h = z/h = 0

NASTRAN LM4 EMC1

106.398 109.80 105.10

(214326) (45927) (10206)

Comparison between FEM and NASTRAN (inside the parentheses the num
rk
s ¼ F TðzkÞrk

sT þ F BðzkÞrk
sB þ F 2ðzkÞrk

s2 þ � � �
þ F N�1ðzkÞrk

sðN�1ÞF NðzkÞrk
sN ð10Þ

where rk
sT and rk

sB are the Top and Bottom layer values

of the transverse stresses, while rk
ns (s = 2,N) are the

higher order terms.

FT(zk), FT(zk) and Fr(zk) are appropriate combina-
tions of Legendre polynomials.

Subscript s denote the three out-of-plane stress com-

ponents s = 13,23 and 33. IC requires the fulfillment of

the following relation:

rk
sB ¼ rk�1

sT ð11Þ
As has been done for the classical theories EDN and

EDZN, it is possible to define the theories EMCN and

EMZCN (M = based on a mixed formulation, C = inter-
laminar Continuity of the transverse stresses is satisfied).

In the theories EMCN the zig–zag term is not included,

while in the theories EMZCN such term is used.
5. Results

5.1. Comparison with some results available in the

literature

In Tables 1 and 2, the present formulation (indicated

with FEM) is compared with some available results and

with the analytical formulation reported in [1] and indi-

cated with ANLT. In Table 1 the simple use of MZZF is

reported, while in Table 2 the advanced use of MZZF is

shown. The advantage in using MZZF in both classical
and mixed FEM models is confirmed.

5.2. A proposed test case: comparison with the

commercial code NASTRAN

A test case is built and the present results are com-

pared with the commercial code NASTRAN. The ana-

lyzed structure is a cantilever plate made by two layers
of equal thickness (0/90) and loaded at the top surface

with a uniform pressure pz = p0. The used material is

represented by the following data: EL/ET = 25,GLT/

ET = 0.5, GTT/ET = 0.2 and mLT = mTT = .25. The length

is indicated with a, while the width and thickness are

indicated with b and h, respectively. In the examined

case, the following geometric ratios are used: a/h = 4
EMZC1 EMC3 EMZC3

107.10 108.41 108.37

(15309) (20412) (25515)

ber of DOF are reported).
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and b/h = 1. Clearly, in such structure the three-dimen-

sional effects are important, and Equivalent Single

Layer Models cannot describe the displacement and

stress fields properly. However, the usage of MZZF im-

proves the results, as will be shown below.

In Fig. 4 the non-dimensional displacement uy/h,
calculated using NASTRAN, 1 is shown. Fig. 4 also re-

ports the position of the line l, where the non-dimen-

sional displacement uy/h is diagrammed along z/h in

Fig. 5. In particular, in Fig. 5, the present FEM results 2

are indicated with LM4 and compared with the results

obtained using NASTRAN. As can be seen, the layer-

wise theory LM4 (see [19] for more details of such

layer-wise theory) shows very good agreement with
NASTRAN. It should be noticed that this result is very

relevant, since the structure is very thick and the non-

dimensional displacement uy/h is, clearly, a local effect:

with the two-dimensional FEM element LM4, it is pos-

sible to capture local effects very well. But the goal of the

present paper is to demonstrate the utility of the MZZF.

Therefore, the previous result is only shown as a refer-

ence for future papers.
In Fig. 6, it is possible to see the quality of the Equiv-

alent Single Layer Models: they are not very accurate, 3

but the improvement obtained by adding the MZZF is

great.

In Fig. 7, a similar comparison (as has been done in

Fig. 6) is performed. The theories EMC3 and EMZC3

are compared. As concluded in [1] and confirmed here,

the usage of MZZF is effective for low order of the
expansion (see Fig. 6).

Fig. 8, shows that classical and advanced usage of

MZZF produce similar results.

In Figs. 9–11 the non-dimensional displacement uy/h

over the plate at z/h = �0.5 is reported. Comparing Figs.

9–11 the advantage of using MZZF is clear: the displace-

ments are better approximated when the MZZF is

adopted.
Figs. 12–14 report the non-dimensional normal stress

rxx/p
0 (x/h = 0, y/h = 0 and z/h varies). It can be seen

that the non-dimensional normal stress rxx/p
0 is very

well approximated even without the zig–zag term.

Figs. 15–17 report the non-dimensional transverse

normal stress rzz/p
0 (x/h = 0, y/h = 0 and z/h varies).

No significant difference is found in using or discarding

the zig–zag effect.
Finally, in Table 3, the number of DOF used in the

theories and NASTRAN is reported.
1 The used NASTRAN elements are EXA (with 8 nodes) and a

mesh 80 · 20 · 20 has been adopted.
2 The used mesh is 40 · 10 (Q9).
3 The structure is very thick and a local effect is considered;

therefore, the fact that the Equivalent Single Layer Models are not

very accurate is obvious.
6. Conclusions

The numerical performance of the inclusion of Mura-

kami�s zig–zag function using a FEM analysis has been

investigated for multilayered plate theories. MZZF has

been applied in both classical theories (based on PVD)
and advanced theories (based on RMVT). The following

conclusions can be made:

• The present FEM formulation has shown very good

correlation with respect to the corresponding analyt-

ical formulation (see [1]).

• The inclusion of MZZF is very effective, especially if

the order of the expansion along the thickness is low.
• In order to capture local effects, the inclusion of

MZZF is not enough, and advanced layer-wise theo-

ries or three-dimensional models are required.
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